Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.034
Filtrar
1.
Microb Biotechnol ; 17(5): e14443, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38722820

RESUMEN

Pectin structures have received increasing attention as emergent prebiotics due to their capacity to promote beneficial intestinal bacteria. Yet the collective activity of gut bacterial communities to cooperatively metabolize structural variants of this substrate remains largely unknown. Herein, the characterization of a pectin methylesterase, BpeM, from Bifidobacterium longum subsp. longum, is reported. The purified enzyme was able to remove methyl groups from highly methoxylated apple pectin, and the mathematical modelling of its activity enabled to tightly control the reaction conditions to achieve predefined final degrees of methyl-esterification in the resultant pectin. Demethylated pectin, generated by BpeM, exhibited differential fermentation patterns by gut microbial communities in in vitro mixed faecal cultures, promoting a stronger increase of bacterial genera associated with beneficial effects including Lactobacillus, Bifidobacterium and Collinsella. Our findings demonstrate that controlled pectin demethylation by the action of a B. longum esterase selectively modifies its prebiotic fermentation pattern, producing substrates that promote targeted bacterial groups more efficiently. This opens new possibilities to exploit biotechnological applications of enzymes from gut commensals to programme prebiotic properties.


Asunto(s)
Hidrolasas de Éster Carboxílico , Heces , Malus , Pectinas , Prebióticos , Malus/microbiología , Pectinas/metabolismo , Heces/microbiología , Hidrolasas de Éster Carboxílico/metabolismo , Hidrolasas de Éster Carboxílico/genética , Fermentación , Humanos , Bifidobacterium longum/metabolismo , Bifidobacterium longum/enzimología , Microbioma Gastrointestinal , Bifidobacterium/enzimología , Bifidobacterium/metabolismo
2.
Plant Physiol Biochem ; 210: 108621, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38604012

RESUMEN

To enhance the postharvest quality of avocado (Persea americana Mill.) fruit, this study investigates alterations in cell wall metabolism and reactive oxygen species (ROS) metabolism during near-freezing temperature (NFT) storage, and explores their impact on fruit softening. The fruit was stored at 25 °C, 5 °C, 2 °C, and NFT, respectively. NFT storage retarded firmness loss and chilling injury in comparison with 25 °C, 5 °C, and 2 °C. NFT storage delayed the decrease of ionic-soluble pectin (ISP) and cellulose (CLL) contents by suppressing cell wall degradation enzyme activities. Correlation analysis showed that cell wall degradation enzyme activities were positively correlated to rates of ethylene release and respiration. Moreover, NFT storage maintained higher levels of DPPH and ABTS scavenging abilities, activities of superoxide dismutase, peroxidase, and catalase, as well as ascorbate-glutathione cycle (ascorbic acid, glutathione, glutathione disulfide, ascorbate peroxidase, cycle-related enzymes), thereby inhibited the increase of ROS content, malondialdehyde content, and cell membrane permeability. Fruit firmness and chilling injury were correlated with the contents of hydrogen (H2O2), superoxide anion (O2.-), ISP, and CLL. These results suggested that NFT could suppress fruit softening and chilling injury by inhibiting cell wall degradation through delaying respiration and ethylene production and suppressing ROS production via activation of antioxidant systems, thereby maintaining quality and prolonged storage life during avocado fruit storage.


Asunto(s)
Pared Celular , Frutas , Persea , Especies Reactivas de Oxígeno , Persea/metabolismo , Pared Celular/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Frutas/metabolismo , Almacenamiento de Alimentos/métodos , Frío , Congelación , Etilenos/metabolismo , Pectinas/metabolismo , Celulosa/metabolismo
3.
Int J Biol Macromol ; 267(Pt 1): 131278, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38582459

RESUMEN

Four modified hawthorn pectin fractions (MHPs), named MHP-30, MHP-50, MHP-70 and MHP-90, were obtained by ultrasonic-assisted pectin methyl esterase modification and gradient ethanol precipitation. The results indicated that all four MHPs were composed of galacturonic acid, galactose, xylose, arabinose, glucose and mannose in different proportions. With the increase of the ethanol concentration, the molecular weight, esterification degree and galacturonic acid content of MHPs all decreased, whereas the arabinose content and branching degree increased. The structural characterization from XRD, SEM, and FT-IR showed that four MHPs exhibited amorphous structure, similar functional groups, diverse surface morphologies. Besides, in vitro antioxidant assays confirmed that MHP-70 and MHP-90 exhibited stronger total antioxidant activities than MHP-30 and MHP-50. The results of simulated saliva-gastrointestinal digestion showed that the molecular weight of MHP-70 and MHP-90 remained stable, yielded small amounts of reducing sugars, and were resistant to digestion in the human upper digestive tract. Overall, MHP-70 and MHP-90 shown great potential as novel natural antioxidants, which are expected to be good carbon sources for the utilization of intestinal microorganisms.


Asunto(s)
Antioxidantes , Crataegus , Etanol , Pectinas , Pectinas/química , Pectinas/metabolismo , Antioxidantes/química , Antioxidantes/farmacología , Etanol/química , Crataegus/química , Digestión , Peso Molecular , Humanos , Precipitación Química , Espectroscopía Infrarroja por Transformada de Fourier
4.
Proc Natl Acad Sci U S A ; 121(15): e2321759121, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38579009

RESUMEN

Adjacent plant cells are connected by specialized cell wall regions, called middle lamellae, which influence critical agricultural characteristics, including fruit ripening and organ abscission. Middle lamellae are enriched in pectin polysaccharides, specifically homogalacturonan (HG). Here, we identify a plant-specific Arabidopsis DUF1068 protein, called NKS1/ELMO4, that is required for middle lamellae integrity and cell adhesion. NKS1 localizes to the Golgi apparatus and loss of NKS1 results in changes to Golgi structure and function. The nks1 mutants also display HG deficient phenotypes, including reduced seedling growth, changes to cell wall composition, and tissue integrity defects. These phenotypes are comparable to qua1 and qua2 mutants, which are defective in HG biosynthesis. Notably, genetic interactions indicate that NKS1 and the QUAs work in a common pathway. Protein interaction analyses and modeling corroborate that they work together in a stable protein complex with other pectin-related proteins. We propose that NKS1 is an integral part of a large pectin synthesis protein complex and that proper function of this complex is important to support Golgi structure and function.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Adhesión Celular/genética , Pectinas/metabolismo , Aparato de Golgi/genética , Aparato de Golgi/metabolismo , Pared Celular/metabolismo
5.
Int J Biol Macromol ; 267(Pt 2): 131565, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38614184

RESUMEN

Endopolygalacturonases are crucial pectinases known for their efficient and sustainable pectin depolymerization activities. The present study identified a novel gene encoding endopolygalacturonase from an acidic mine tailing metagenome. The putative gene showed a maximum identity of 67.55 % with an uncharacterized peptide sequence from Flavobacterium fluvii. The gene was cloned and expressed in a heterologous host, E. coli. Biochemical characterization of the novel endopolygalacturonase enzyme variant (EPHM) showed maximum activity at 60 °C and at 5.0 pH, while retaining 50 % activity under the temperature and pH range of 20 °C to 70 °C for 6 h, and 3.0 to 10.0 for 3 h, respectively. The enzyme exhibited tolerance to different metal ions. EPHM was characterized for the depolymerization of methylated pectin into pectic oligosaccharides. Further, its utility was established for fruit juice clarification, as endorsed by high transmittance, significant viscosity reduction, and release of reducing sugars in the treated fruit juice samples.


Asunto(s)
Jugos de Frutas y Vegetales , Pectinas , Poligalacturonasa , Pectinas/metabolismo , Pectinas/química , Poligalacturonasa/metabolismo , Poligalacturonasa/química , Poligalacturonasa/genética , Jugos de Frutas y Vegetales/análisis , Concentración de Iones de Hidrógeno , Temperatura , Clonación Molecular , Polimerizacion , Oligosacáridos/química
6.
BMC Plant Biol ; 24(1): 295, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38632520

RESUMEN

The extraction of bast fibres such as jute from plant stems involves the removal of pectin, hemicellulose, and other noncellulosic materials through a complex microbial community. A consortium of pectinolytic bacterial strains has been developed and commercialized to reduce the retting time and enhance fibre quality. However, there are currently no studies on jute that describe the structural changes and sequential microbial colonization and pectin loss that occur during microbe-assisted water retting. This study investigated the stages of microbial colonization, microbial interactions, and sequential degradation of pectic substances from jute bark under controlled and conventional water retting. The primary occurrence during water retting of bast fibres is the bacterially induced sequential breakdown of pectin surrounding the fibre bundles. The study also revealed that the pectin content of the jute stem significantly decreases during the retting process. These findings provide a strong foundation for improving microbial strains for improved pectinolysis with immense industrial significance, leading to a sustainable jute-based "green" economy.


Asunto(s)
Corchorus , Corchorus/metabolismo , Agua/metabolismo , Pectinas/metabolismo , Bacterias/metabolismo
7.
Carbohydr Polym ; 336: 122122, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38670769

RESUMEN

Pectin interacts with fibronectin (FN), a modular protein in the extracellular matrix. This interaction is significant as FN plays a pivotal role by binding to the receptor integrin α5ß1. However, the molecular mechanism underlying the pectin-FN interaction and its impact on integrin binding remains unknown. In this study, water-soluble pectins (WSPs) were extracted from three different pectin sources and subsequently characterized. These included Citrus WSP, which primarily comprises the homogalacturonan region, and Kaki and Yuzu WSPs, both of which are rich in rhamnogalacturonan regions. We investigated the molecular interactions between these WSPs and two FN fragments, Anastellin and RetroNectin, using surface plasmon resonance analysis. Citrus WSP exhibited a notable binding affinity to FN, with a dissociation constant (KD) of approximately 10-7 M. In contrast, Kaki and Yuzu WSPs displayed comparatively weaker or negligible binding affinities. The binding reactivity of Citrus WSP with FN was notably diminished following the enzymatic removal of its methyl-ester groups. Additionally, Citrus WSP disrupted the binding of integrin ß1 to RetroNectin without altering the affinity, despite its minimal direct binding to integrin itself. This study furthers our understanding of the intricate pectin-FN interaction and sheds light on their potential physiological relevance and impact on cellular responses.


Asunto(s)
Fibronectinas , Integrina beta1 , Pectinas , Unión Proteica , Pectinas/metabolismo , Pectinas/química , Fibronectinas/metabolismo , Fibronectinas/química , Integrina beta1/metabolismo , Citrus/química , Citrus/metabolismo , Humanos , Resonancia por Plasmón de Superficie
8.
Physiol Plant ; 176(3): e14320, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38686642

RESUMEN

Many nucleoside triphosphate-diphosphohydrolases (NTPDases/APYRASEs, APYs) play a key role in modulating extracellular nucleotide levels. However, the Golgi-localized APYs, which help control glycosylation, have rarely been studied. Here, we identified AtAPY1, a gene encoding an NTPDase in the Golgi apparatus, which is required for cell wall integrity and plant growth under boron (B) limited availability. Loss of function in AtAPY1 hindered cell elongation and division in root tips while increasing the number of cortical cell layers, leading to swelling of the root tip and abundant root hairs under low B stress. Further, expression pattern analysis revealed that B deficiency significantly induced AtAPY1, especially in the root meristem and stele. Fluorescent-labeled AtAPY1-GFP localized to the Golgi stack. Biochemical analysis showed that AtAPY1 exhibited a preference of UDP and GDP hydrolysis activities. Consequently, the loss of function in AtAPY1 might disturb the homoeostasis of NMP-driven NDP-sugar transport, which was closely related to the synthesis of cell wall polysaccharides. Further, cell wall-composition analysis showed that pectin content increased and borate-dimerized RG-II decreased in apy1 mutants, along with a decrease in cellulose content. Eventually, altered polysaccharide characteristics presumably cause growth defects in apy1 mutants under B deficiency. Altogether, these data strongly support a novel role for AtAPY1 in mediating responses to low B availability by regulating cell wall integrity.


Asunto(s)
Apirasa , Proteínas de Arabidopsis , Arabidopsis , Boro , Pared Celular , Aparato de Golgi , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/enzimología , Arabidopsis/metabolismo , Pared Celular/metabolismo , Boro/metabolismo , Boro/deficiencia , Aparato de Golgi/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Apirasa/metabolismo , Apirasa/genética , Regulación de la Expresión Génica de las Plantas , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Meristema/genética , Meristema/crecimiento & desarrollo , Meristema/metabolismo , Pectinas/metabolismo
9.
Int J Biol Macromol ; 266(Pt 2): 131309, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38580019

RESUMEN

Enzymatic degradation of plant biomass requires the coordinated action of various enzymes. In this study, the production of reducing sugars from pectic substrates and sugar beet pulp (SBP) was investigated and compared using commercial enzyme preparations, including M2, pectinase (E1), Viscozyme L (V-L) and L-40. V-L, a cellulolytic enzyme mix produced by Aspergillus sp. was further evaluated as the most robust enzyme cocktail with the strongest SBP degradation ability in terms of the release of monosaccharides, methanol, and acetate from SBP. Mass-spectrometry-based proteomics analysis of V-L revealed 156 individual proteins. Of these, 101 proteins were annotated as containing a carbohydrate-active enzyme module. Notably, of the 50 most abundant proteins, ca. 44 % were predicted to be involved in pectin degradation. To reveal the role of individual putative key enzymes in pectic substrate decomposition, two abundant galacturonases (PglA and PglB), were heterologously expressed in Pichia pastoris and further characterized. PglA and PglB demonstrated maximum activity at 57 °C and 68 °C, respectively, and exhibited endo-type cleavage patterns towards polygalacturonic acid. Further studies along this line may lead to a better understanding of efficient SBP degradation and may help to design improved artificial enzyme mixtures with lower complexity for future application in biotechnology.


Asunto(s)
Pectinas , Proteómica , Pectinas/metabolismo , Proteómica/métodos , Especificidad por Sustrato , Poligalacturonasa/metabolismo , Poligalacturonasa/química , Beta vulgaris/química , Beta vulgaris/metabolismo , Aspergillus/enzimología
10.
Sci Rep ; 14(1): 6069, 2024 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-38480775

RESUMEN

Arabica coffee is the most popular and best-selling type of coffee. During coffee fermentation, microorganisms are essential for the production of metabolites and volatile compounds that affect coffee flavor quality. This work aimed to study the mutation, selection, and characterization of the Wickerhamomyces anomalus strain YWP1-3 as a starter culture to enhance the flavor quality of Arabica coffee. The results revealed that six mutants could produce relatively high levels of the pectinase enzyme on pectin agar media and exhibited high activity levels, ranging from 332.35 to 415.88 U/ml in mucilage broth. Strains UV22-2, UV22-3, UV41-1 and UV32-1 displayed higher levels of amylase activity than did the wild type. The UV22-2 and UV22-3 mutants exhibited the highest pectin degradation indices of 49.22% and 45.97%, respectively, and displayed significantly enhanced growth rates in nitrogen yeast base media supplemented with various sugars; thus, these mutants were evaluated for their ability to serve as a starter for fermentation of Arabica coffee. The cupping scores of coffees derived from UV22-2 and UV22-3 were 83.5 ± 1.5 and 82.0 ± 2.14, respectively. The volatile compounds in the roasted coffee fermented by UV22-2 were analyzed by GC‒MS, which revealed higher levels of furfuryl alcohol and furfuryl acetate than did the other samples. These findings suggested that UV22-2 could be an influential starter culture for Arabica coffee fermentation.


Asunto(s)
Coffea , Café , Café/metabolismo , Fermentación , Coffea/metabolismo , Levaduras/genética , Pectinas/metabolismo
11.
Plant Physiol Biochem ; 208: 108455, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38428157

RESUMEN

'Zaosu' pear fruit is prone to yellowing of the surface and softening of the flesh after harvest. This work was performed to assess the influences of L-glutamate treatment on the quality of 'Zaosu' pears and elucidate the underlying mechanisms involved. Results demonstrated that L-glutamate immersion reduced ethylene release, respiratory intensity, weight loss, brightness (L*), redness (a*), yellowness (b*), and total coloration difference (ΔE); enhanced ascorbic acid, soluble solids, and soluble sugar contents; maintained chlorophyll content and flesh firmness of pears. L-glutamate also restrained the activities of neutral invertase and acid invertase, while enhancing sucrose phosphate synthetase and sucrose synthase activities to facilitate sucrose accumulation. The transcriptions of PbSGR1, PbSGR2, PbCHL, PbPPH, PbRCCR, and PbNYC were suppressed by L-glutamate, resulting in a deceleration of chlorophyll degradation. L-glutamate concurrently suppressed the transcription levels and enzymatic activities of polygalacturonases, pectin methylesterases, cellulase, and ß-glucosidase. It restrained polygalacturonic acid trans-eliminase and pectin methyl-trans-eliminase activities as well as inhibited the transcription levels of PbPL and Pbß-gal. Moreover, the gene transcriptions and enzymatic activities of arginine decarboxylase, ornithine decarboxylase, S-adenosine methionine decarboxylase, glutamate decarboxylase, γ-aminobutyric acid transaminase, glutamine synthetase along with the PbSPDS transcription was promoted by L-glutamate. L-glutamate also resulted in the down-regulation of PbPAO, PbDAO, PbSSADH, PbGDH, and PbGOGAT transcription levels, while enhancing γ-aminobutyric acid, glutamate, and pyruvate acid contents in pears. These findings suggest that L-glutamate immersion can effectively maintain the storage quality of 'Zaosu' pears via modulating key enzyme activities and gene transcriptions involved in sucrose, chlorophyll, cell wall, and polyamine metabolism.


Asunto(s)
Carboxiliasas , Pyrus , Pyrus/genética , Pyrus/metabolismo , Sacarosa/metabolismo , Ácido Glutámico/metabolismo , Frutas/metabolismo , Clorofila/metabolismo , Pared Celular , Pectinas/metabolismo , Carboxiliasas/metabolismo , Ácido gamma-Aminobutírico/farmacología , Poliaminas/metabolismo
12.
Plant Physiol Biochem ; 208: 108495, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38452451

RESUMEN

Solanum lycopersicum (Tomato) leaves and stems are considered waste. Valorization of this waste can be achieved by for example the extraction of proteins. This prospect is promising but currently not feasible, since protein extraction yields from tomato leaves are low, amongst other due to the (physical) barrier formed by the plant cell walls. However, the molecular aspects of the relationship between cell wall properties and protein extractability from tomato leaves are currently not clear and thus objective of this study. To fill this knowledge gap the biochemical composition of plant cell walls was measured and related to protein extraction yields at different plant ages, leaf positions, and across different tomato accessions, including two Solanum lycopersicum cultivars and the wildtype species S. pimpinellifolium and S. pennellii. For all genotypes, protein extraction yields from tomato leaves were the highest in young tissues, with a decreasing trend towards older plant material. This decrease of protein extraction yield was accompanied by a significant increase of arabinose and galacturonic acid content and a decrease of galactose content in the cell walls of old-vs-young tissues. This resulted in strong negative correlations between protein extraction yield and the content of arabinose and galacturonic acid in the cell wall, and a positive correlation between the content of galactose and protein extraction yield. Overall, these results point to the importance of the pectin network on protein extractability, making pectin a potential breeding target for enhancing protein extractability from tomato leaves.


Asunto(s)
Ácidos Hexurónicos , Solanum lycopersicum , Solanum lycopersicum/genética , Arabinosa , Galactosa , Fitomejoramiento , Pared Celular/metabolismo , Hojas de la Planta/metabolismo , Pectinas/metabolismo
13.
J Environ Manage ; 357: 120691, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38554452

RESUMEN

Regions affected by heavy metal contamination frequently encounter phosphorus (P) deficiency. Numerous studies highlight crucial role of P in facilitating cadmium (Cd) accumulation in woody plants. However, the regulatory mechanism by which P affects Cd accumulation in roots remains ambiguous. This study aims to investigate the effects of phosphorus (P) deficiency on Cd accumulation, Cd subcellular distribution, and cell wall components in the roots of Salix caprea under Cd stress. The results revealed that under P deficiency conditions, there was a 35.4% elevation in Cd content in roots, coupled with a 60.1% reduction in Cd content in shoots, compared to the P sufficiency conditions. Under deficient P conditions, the predominant response of roots to Cd exposure was the increased sequestration of Cd in root cell walls. The sequestration of Cd in root cell walls increased from 37.1% under sufficient P conditions to 66.7% under P deficiency, with pectin identified as the primary Cd binding site under both P conditions. Among cell wall components, P deficiency led to a significant 31.7% increase in Cd content within pectin compared to P sufficiency conditions, but did not change the pectin content. Notably, P deficiency significantly increased pectin methylesterase (PME) activity by regulating the expression of PME and PMEI genes, leading to a 10.4% reduction in the degree of pectin methylesterification. This may elucidate the absence of significant changes in pectin content under P deficiency conditions and the concurrent increase in Cd accumulation in pectin. Fourier transform infrared spectroscopy (FTIR) results indicated an increase in carboxyl groups in the root cell walls under P deficiency compared to sufficient P treatment. The results provide deep insights into the mechanisms of higher Cd accumulation in root mediated by P deficiency.


Asunto(s)
Pectinas , Salix , Pectinas/química , Pectinas/metabolismo , Pectinas/farmacología , Cadmio/metabolismo , Salix/metabolismo , Raíces de Plantas/química , Pared Celular/metabolismo , Fósforo/análisis
14.
Int J Biol Macromol ; 265(Pt 1): 130954, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38499125

RESUMEN

Designing multifunctional wound dressings is a prerequisite to prevent infection and stimulate healing. In this study, a bilayer scaffold (BS) with a top layer (TL) comprising 3D printed pectin/polyacrylic acid/platelet rich fibrin hydrogel (Pec/PAA/PRF) and a bottom nanofibrous layer (NL) containing Pec/PAA/simvastatin (SIM) was produced. The biodegradable and biocompatible polymers Pec and PAA were cross-linked to form hydrogels via Ca2+ activation through galacturonate linkage and chelation, respectively. PRF as an autologous growth factor (GF) source and SIM together augmented angiogenesis and neovascularization. Because of 3D printing, the BS possessed a uniform distribution of PRF in TL and an average fiber diameter of 96.71 ± 18.14 nm was obtained in NL. The Young's modulus of BS was recorded as 6.02 ± 0.31 MPa and its elongation at break was measured as 30.16 ± 2.70 %. The wound dressing gradually released growth factors over 7 days of investigation. Furthermore, the BS significantly outperformed other groups in increasing cell viability and in vivo wound closure rate (95.80 ± 3.47 % after 14 days). Wounds covered with BS healed faster with more collagen deposition and re-epithelialization. The results demonstrate that the BS can be a potential remedy for skin tissue regeneration.


Asunto(s)
Fibrina Rica en Plaquetas , Simvastatina/farmacología , Simvastatina/metabolismo , Pectinas/farmacología , Pectinas/metabolismo , Piel/metabolismo , Impresión Tridimensional
15.
Food Chem ; 447: 138918, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-38484543

RESUMEN

In this study, it was found that the enhancement in the viability of Lactobacillus plantarum under gastrointestinal conditions by encapsulating them within novel C-Phycocyanin-pectin based hydrogels (from 5.7 to 7.1 log/CFU). The hardness, the strength and the stability of the hydrogels increased when the protein concentration was increased. In addition, the addition of resveratrol (RES), and tannic acid (TA) could improve the hardness (from 595.4 to 608.3 and 637.0 g) and WHC (from 93.9 to 94.2 and 94.8 %) of the hydrogels. The addition of gallic acid (GA) enhanced the hardness (675.0 g) of the hydrogels, but the WHC (86.2 %) was decreased. During simulated gastrointestinal conditions and refrigerated storage, the addition of TA enhanced the viable bacteria counts (from 6.8 and 8.0 to 7.5 and 8.5 log/CFU) of Lactobacillus plantarum. Furthermore, TA and GA are completely encased by the protein-pectin gel as an amorphous state, while RA is only partially encased.


Asunto(s)
Lactobacillus plantarum , Probióticos , Lactobacillus plantarum/metabolismo , Pectinas/metabolismo , Hidrogeles/metabolismo , Ficocianina , Polifenoles/metabolismo , Probióticos/metabolismo
16.
Int J Biol Macromol ; 264(Pt 1): 130476, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38428761

RESUMEN

A whole-cell biocatalyst was developed by genetically engineering pectinase PG5 onto the cell surface of Pichia pastoris using Gcw12 as the anchoring protein. Whole-cell PG5 eliminated the need for enzyme extraction and purification, while also exhibiting enhanced thermal stability, pH stability, and resistance to proteases in vitro compared to free PG5. Magnetic resonance mass spectrometry analysis revealed that whole-cell PG5 efficiently degraded citrus pectin, resulting in the production of a mixture of pectin oligosaccharides. The primary components of the mixture were trigalacturonic acid, followed by digalacturonic acid and tetragalacturonic acid. Supplementation of citrus pectin with whole-cell PG5 resulted in a more pronounced protective effect compared to free PG5 in alleviating colitis symptoms and promoting the integrity of the colonic epithelial barrier in a mouse model of dextran sulfate sodium-induced colitis. Hence, this study demonstrates the potential of utilizing whole-cell pectinase as an effective biocatalyst to promote intestinal homeostasis in vivo.


Asunto(s)
Colitis , Poligalacturonasa , Saccharomycetales , Animales , Ratones , Poligalacturonasa/genética , Poligalacturonasa/metabolismo , Funcion de la Barrera Intestinal , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/metabolismo , Pectinas/farmacología , Pectinas/metabolismo , Suplementos Dietéticos
17.
Int J Biol Macromol ; 264(Pt 1): 130510, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38447847

RESUMEN

Pectin polysaccharides have demonstrated diverse biological activities, however, the inflammatory potential of pectin polysaccharides extracted from Cucurbita moschata Duch remains unexplored. This study aims to extract, characterize and evaluate the effects of pumpkin pectin polysaccharide on lipopolysaccharide (LPS)-induced inflammatory response in RAW264.7 cells and dextran sulfate sodium (DSS)-induced colitis in mice, along with its underlying mechanism of action. Initially, we extracted three fractions of pectin polysaccharides from pumpkin and screened them for anti-inflammatory activity in LPS-induced macrophages, identifying CMDP-3a as the most potent anti-inflammatory fraction. Subsequently, CMDP-3a underwent comprehensive characterization through chromatography and spectroscopic analysis, revealing CMDP-3a as an RG-I-HG type pectin polysaccharide with →4)-α-D-GalpA-(1 â†’ and →4)-α-D-GalpA-(1 â†’ 2,4)-α-L-Rhap-(1 â†’ as the main chain. Further, in the LPS-induced RAW264.7 cells model, treatment with CMDP-3a significantly down-regulated the mRNA expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and pro-inflammatory cytokines (IL-1ß, TNF-α, and IL-6) by inhibiting the MAPK and NF-κB signaling pathways. Finally, in a mouse colitis model, CMDP-3a administration obviously inhibited DSS-induced pathological alterations and reduced inflammatory cytokine expressions in the colonic tissues by down-regulating the TLR4/NF-κB and MAPK pathways. These findings provide a molecular basis for the potential application of CMDP-3a in reducing inflammatory responses.


Asunto(s)
Colitis , Cucurbita , Animales , Ratones , FN-kappa B/metabolismo , Lipopolisacáridos/efectos adversos , Pectinas/farmacología , Pectinas/metabolismo , Antiinflamatorios/química , Polisacáridos/farmacología , Polisacáridos/uso terapéutico , Polisacáridos/química , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/patología , Citocinas/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Ciclooxigenasa 2/metabolismo
18.
Int J Biol Macromol ; 262(Pt 2): 130137, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38354940

RESUMEN

Crop straws provide enormous biomass residues applicable for biofuel production and trace metal phytoremediation. However, as lignocellulose recalcitrance determines a costly process with potential secondary waste liberation, genetic modification of plant cell walls is deemed as a promising solution. Although pectin methylation plays an important role for plant cell wall construction and integrity, little is known about its regulation roles on lignocellulose hydrolysis and trace metal elimination. In this study, we initially performed a typical CRISPR/Cas9 gene-editing for site mutations of OsPME31, OsPME34 and OsPME79 in rice, and then determined significantly upgraded pectin methylation degrees in the young seedlings of three distinct site-mutants compared to their wild type. We then examined distinctively improved lignocellulose recalcitrance in three mutants including reduced cellulose levels, crystallinity and polymerization or raised hemicellulose deposition and cellulose accessibility, which led to specifically enlarged biomass porosity either for consistently enhanced biomass enzymatic saccharification under mild alkali pretreatments or for cadmium (Cd) accumulation up to 2.4-fold. Therefore, this study proposed a novel model to elucidate how pectin methylation could play a unique enhancement role for both lignocellulose enzymatic hydrolysis and Cd phytoremediation, providing insights into precise pectin modification for effective biomass utilization and efficient trace metal exclusion.


Asunto(s)
Oryza , Oryza/metabolismo , Pectinas/metabolismo , Cadmio/metabolismo , Biomasa , Biodegradación Ambiental , Lignina/metabolismo , Celulosa/metabolismo , Metilación
19.
Plant Physiol Biochem ; 207: 108401, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38301327

RESUMEN

The exogenous application of amino acids (AAs) generally alleviates cadmium (Cd) toxicity in plants by altering their subcellular distribution. However, the physiological mechanisms underlying AA-mediated cell wall (CW) sequestration of Cd in Chinese cabbage remain unclear. Using two genotypes of Chinses cabbage, Jingcui 60 (Cd-tolerant) and 16-7 (Cd-sensitive), we characterized the root structure, subcellular distribution of Cd, CW component, and related gene expression under the Cd stress. Cysteine (Cys) supplementation led to a reduction in the Cd concentration in the shoots of Jingcui 60 and 16-7 by 65.09 % and 64.03 %, respectively. Addition of Cys alleviated leaf chlorosis in both cultivars by increasing Cd chelation in the root CW and reducing its distribution in the cytoplasm and organelles. We further demonstrated that Cys supplementation mediated the downregulation of PMEI1 expression and improving the activity of pectin methyl-esterase (PME) by 17.98 % and 25.52 % in both cultivars, respectively, compared to the Cd treatment, resulting in an approximate 12.00 %-14.70 % increase in Cd retention in pectin. In contrast, threonine (Thr) application did not significantly alter Cd distribution in the shoots of either cultivar. Taken together, our results suggest that Cys application reduces Cd root-to-shoot translocation by increasing Cd sequestration in the root CW through the downregulation of pectin methyl-esterification.


Asunto(s)
Brassica , Contaminantes del Suelo , Pectinas/metabolismo , Cadmio/metabolismo , Aminoácidos/metabolismo , Esterificación , Brassica/genética , Brassica/metabolismo , Raíces de Plantas/metabolismo , Contaminantes del Suelo/metabolismo
20.
Int J Biol Macromol ; 261(Pt 2): 129842, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38309386

RESUMEN

Pseudomonas aeruginosa is an opportunistic Gram-negative bacterium with adaptive metabolic abilities. It can cause hospital-acquired infections with significant mortality rates, particularly in people with already existing medical conditions. Its ability to develop resistance to common antibiotics makes managing this type of infections very challenging. Furthermore, oxidative stress is a common consequence of bacterial infection and antibiotic therapy, due to formation of reactive oxygen species (ROS) during their mode of action. In this study we aimed to alleviate oxidative stress and enhance the antibacterial efficacy of ciprofloxacin (CPR) antibiotic by its co-encapsulation with naringin (NAR) within a polyelectrolyte complex (PEX). The PEX comprised of polycationic lactoferrin (LF) and polyanionic pectin (PEC). CPR/NAR-loaded PEX exhibited spherical shape with particle size of 237 ± 3.5 nm, negatively charged zeta potential (-23 ± 2.2 mV) and EE% of 61.2 ± 4.9 for CPR and 76.2 ± 3.4 % for NAR. The LF/PEC complex showed prolonged sequential release profile of CPR to limit bacterial expansion, followed by slow liberation of NAR, which mitigates excess ROS produced by CPR's mechanism of action without affecting its efficacy. Interestingly, this PEX demonstrated good hemocompatibility with no significant in vivo toxicity regarding hepatic and renal functions. In addition, infected mice administrated this nanoplatform intravenously exhibited significant CFU reduction in the lungs and kidneys, along with reduced immunoreactivity against myeloperoxidase. Moreover, this PEX was found to reduce the lungs´ oxidative stress via increasing both glutathione (GSH) and catalase (CAT) levels while lowering malondialdehyde (MDA). In conclusion, CPR/NAR-loaded PEX can offer a promising targeted lung delivery strategy while enhancing the therapeutic outcomes of CPR with reduced oxidative stress.


Asunto(s)
Flavanonas , Lactoferrina , Pectinas , Humanos , Ratones , Animales , Lactoferrina/farmacología , Lactoferrina/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Pectinas/farmacología , Pectinas/metabolismo , Antibacterianos/farmacología , Estrés Oxidativo , Glutatión/metabolismo , Ciprofloxacina/farmacología , Pulmón/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA